3.355 \(\int \frac{1}{x^3 (1-x^4+x^8)} \, dx\)

Optimal. Leaf size=57 \[ -\frac{1}{2 x^2}-\frac{\log \left (x^4-\sqrt{3} x^2+1\right )}{4 \sqrt{3}}+\frac{\log \left (x^4+\sqrt{3} x^2+1\right )}{4 \sqrt{3}} \]

[Out]

-1/(2*x^2) - Log[1 - Sqrt[3]*x^2 + x^4]/(4*Sqrt[3]) + Log[1 + Sqrt[3]*x^2 + x^4]/(4*Sqrt[3])

________________________________________________________________________________________

Rubi [A]  time = 0.0419199, antiderivative size = 57, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {1359, 1123, 1164, 628} \[ -\frac{1}{2 x^2}-\frac{\log \left (x^4-\sqrt{3} x^2+1\right )}{4 \sqrt{3}}+\frac{\log \left (x^4+\sqrt{3} x^2+1\right )}{4 \sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(1 - x^4 + x^8)),x]

[Out]

-1/(2*x^2) - Log[1 - Sqrt[3]*x^2 + x^4]/(4*Sqrt[3]) + Log[1 + Sqrt[3]*x^2 + x^4]/(4*Sqrt[3])

Rule 1359

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[
1/k, Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k) + c*x^((2*n)/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b,
 c, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 1123

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*x^2 +
 c*x^4)^(p + 1))/(a*d*(m + 1)), x] - Dist[1/(a*d^2*(m + 1)), Int[(d*x)^(m + 2)*(b*(m + 2*p + 3) + c*(m + 4*p +
 5)*x^2)*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && In
tegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1164

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e - b/c, 2]},
 Dist[e/(2*c*q), Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x
 - x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] &&  !GtQ[b^2
- 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{x^3 \left (1-x^4+x^8\right )} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{x^2 \left (1-x^2+x^4\right )} \, dx,x,x^2\right )\\ &=-\frac{1}{2 x^2}+\frac{1}{2} \operatorname{Subst}\left (\int \frac{1-x^2}{1-x^2+x^4} \, dx,x,x^2\right )\\ &=-\frac{1}{2 x^2}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{3}+2 x}{-1-\sqrt{3} x-x^2} \, dx,x,x^2\right )}{4 \sqrt{3}}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{3}-2 x}{-1+\sqrt{3} x-x^2} \, dx,x,x^2\right )}{4 \sqrt{3}}\\ &=-\frac{1}{2 x^2}-\frac{\log \left (1-\sqrt{3} x^2+x^4\right )}{4 \sqrt{3}}+\frac{\log \left (1+\sqrt{3} x^2+x^4\right )}{4 \sqrt{3}}\\ \end{align*}

Mathematica [A]  time = 0.0157662, size = 55, normalized size = 0.96 \[ \frac{1}{12} \left (-\frac{6}{x^2}-\sqrt{3} \log \left (-x^4+\sqrt{3} x^2-1\right )+\sqrt{3} \log \left (x^4+\sqrt{3} x^2+1\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(1 - x^4 + x^8)),x]

[Out]

(-6/x^2 - Sqrt[3]*Log[-1 + Sqrt[3]*x^2 - x^4] + Sqrt[3]*Log[1 + Sqrt[3]*x^2 + x^4])/12

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 44, normalized size = 0.8 \begin{align*} -{\frac{1}{2\,{x}^{2}}}-{\frac{\ln \left ( 1+{x}^{4}-{x}^{2}\sqrt{3} \right ) \sqrt{3}}{12}}+{\frac{\ln \left ( 1+{x}^{4}+{x}^{2}\sqrt{3} \right ) \sqrt{3}}{12}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(x^8-x^4+1),x)

[Out]

-1/2/x^2-1/12*ln(1+x^4-x^2*3^(1/2))*3^(1/2)+1/12*ln(1+x^4+x^2*3^(1/2))*3^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{1}{2 \, x^{2}} - \int \frac{{\left (x^{4} - 1\right )} x}{x^{8} - x^{4} + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^8-x^4+1),x, algorithm="maxima")

[Out]

-1/2/x^2 - integrate((x^4 - 1)*x/(x^8 - x^4 + 1), x)

________________________________________________________________________________________

Fricas [A]  time = 1.42929, size = 123, normalized size = 2.16 \begin{align*} \frac{\sqrt{3} x^{2} \log \left (\frac{x^{8} + 5 \, x^{4} + 2 \, \sqrt{3}{\left (x^{6} + x^{2}\right )} + 1}{x^{8} - x^{4} + 1}\right ) - 6}{12 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^8-x^4+1),x, algorithm="fricas")

[Out]

1/12*(sqrt(3)*x^2*log((x^8 + 5*x^4 + 2*sqrt(3)*(x^6 + x^2) + 1)/(x^8 - x^4 + 1)) - 6)/x^2

________________________________________________________________________________________

Sympy [A]  time = 0.15477, size = 49, normalized size = 0.86 \begin{align*} - \frac{\sqrt{3} \log{\left (x^{4} - \sqrt{3} x^{2} + 1 \right )}}{12} + \frac{\sqrt{3} \log{\left (x^{4} + \sqrt{3} x^{2} + 1 \right )}}{12} - \frac{1}{2 x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(x**8-x**4+1),x)

[Out]

-sqrt(3)*log(x**4 - sqrt(3)*x**2 + 1)/12 + sqrt(3)*log(x**4 + sqrt(3)*x**2 + 1)/12 - 1/(2*x**2)

________________________________________________________________________________________

Giac [B]  time = 1.27694, size = 348, normalized size = 6.11 \begin{align*} \frac{1}{48} \,{\left (\sqrt{6} + 3 \, \sqrt{2}\right )} \arctan \left (\frac{4 \, x + \sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}}\right ) + \frac{1}{48} \,{\left (\sqrt{6} + 3 \, \sqrt{2}\right )} \arctan \left (\frac{4 \, x - \sqrt{6} + \sqrt{2}}{\sqrt{6} + \sqrt{2}}\right ) + \frac{1}{48} \,{\left (\sqrt{6} - 3 \, \sqrt{2}\right )} \arctan \left (\frac{4 \, x + \sqrt{6} + \sqrt{2}}{\sqrt{6} - \sqrt{2}}\right ) + \frac{1}{48} \,{\left (\sqrt{6} - 3 \, \sqrt{2}\right )} \arctan \left (\frac{4 \, x - \sqrt{6} - \sqrt{2}}{\sqrt{6} - \sqrt{2}}\right ) + \frac{1}{96} \,{\left (\sqrt{6} + 3 \, \sqrt{2}\right )} \log \left (x^{2} + \frac{1}{2} \, x{\left (\sqrt{6} + \sqrt{2}\right )} + 1\right ) - \frac{1}{96} \,{\left (\sqrt{6} + 3 \, \sqrt{2}\right )} \log \left (x^{2} - \frac{1}{2} \, x{\left (\sqrt{6} + \sqrt{2}\right )} + 1\right ) + \frac{1}{96} \,{\left (\sqrt{6} - 3 \, \sqrt{2}\right )} \log \left (x^{2} + \frac{1}{2} \, x{\left (\sqrt{6} - \sqrt{2}\right )} + 1\right ) - \frac{1}{96} \,{\left (\sqrt{6} - 3 \, \sqrt{2}\right )} \log \left (x^{2} - \frac{1}{2} \, x{\left (\sqrt{6} - \sqrt{2}\right )} + 1\right ) - \frac{1}{2 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^8-x^4+1),x, algorithm="giac")

[Out]

1/48*(sqrt(6) + 3*sqrt(2))*arctan((4*x + sqrt(6) - sqrt(2))/(sqrt(6) + sqrt(2))) + 1/48*(sqrt(6) + 3*sqrt(2))*
arctan((4*x - sqrt(6) + sqrt(2))/(sqrt(6) + sqrt(2))) + 1/48*(sqrt(6) - 3*sqrt(2))*arctan((4*x + sqrt(6) + sqr
t(2))/(sqrt(6) - sqrt(2))) + 1/48*(sqrt(6) - 3*sqrt(2))*arctan((4*x - sqrt(6) - sqrt(2))/(sqrt(6) - sqrt(2)))
+ 1/96*(sqrt(6) + 3*sqrt(2))*log(x^2 + 1/2*x*(sqrt(6) + sqrt(2)) + 1) - 1/96*(sqrt(6) + 3*sqrt(2))*log(x^2 - 1
/2*x*(sqrt(6) + sqrt(2)) + 1) + 1/96*(sqrt(6) - 3*sqrt(2))*log(x^2 + 1/2*x*(sqrt(6) - sqrt(2)) + 1) - 1/96*(sq
rt(6) - 3*sqrt(2))*log(x^2 - 1/2*x*(sqrt(6) - sqrt(2)) + 1) - 1/2/x^2